
Abstract
We present a communication library to improve performance
of PVM. The new library introduces communication primitives
based on Active Messages. We propose a hybrid scheme that
includes a signal driven message notification scheme plus con-
trolled polling. The new communication library is tested along
with the normal PVM library to assess the improvement in per-
formance.

1. INTRODUCTION

This paper describes an enhancement to the PVM
communication library to improve performance. The new
communication library (PVM-AM) is based on the con-
cept of Active Messages (AM) [11]. Recent research has
shown that communication using active messages has a
lower message passing latency compared to other com-
munication schemes [6, 11]. Implementations of active
messages on different platforms including, a set of work-
stations connected by FDDI [6], CM-5 [5], and more
recently on the Meiko-CS2 [3] have shown that AM has
the potential to provide an order of magnitude reduction
in message passing latency over the existing communi-
cation schemes. In [7] Dongarra examines the feasibil-
ity of adding an AM-layer to PVM, and concludes that a
carefully implemented version of AM will provide an
improvement over the existing communication primi-
tives in the PVM. This paper describes an effective imple-
mentation of AM for reducing the communication la-
tency in PVM environment.

Our communication library, PVM-AM, is based
on the same principle as Active Messages. In an Active
Messages based scheme, messages are received imme-
diately upon their arrival and an associated function is
invoked, which consumes the message (i.e., performs
some computation based on the content of the message).
The difference between AM and our approach is that we

implement the same principles as AM but on a higher
network protocol level, which makes it less dependent
on specific hardware and hence more portable. In our
communication scheme, messages are received imme-
diately on their arrival at the network interface. The
message is then stored in the application’s memory with
some additional information to allow the application
process to use the message at a later point in time.

In contrast with PVM-AM, PVM receives mes-
sages only when the user-application executes a receive
function call. In PVM, if the sender tries to send a mes-
sage and the user application on the remote machine is
not ready to receive it, then the sender buffers the mes-
sage and subsequently retransmits it. Later, when the
receiver executes a receive function call, the receiver may
be blocked as the sender is yet to re-transmit the mes-
sage. This type of blocking, encountered in PVM, is
avoided by our communication scheme because the
message is received the first time it is sent. In [10] it is
shown that draining the network, i.e., receiving messages
as quickly as possible when they arrive, is an important
factor in reducing message passing latency. To reduce
the number of situations where an application process
gets blocked in a receive call, is all the more important
in the current version of PVM as it does not support
multi-threaded applications. The future versions of PVM
are expected to support multi-threaded applications [1].
The PVM-AM communication library will be a comple-
ment to the threaded versions of PVM.

In order to receive messages as soon as they arrive
at the network interface, we need a notfication mecha-
nism to indicate the arrival of a new message. Typical
implementations of AM use either interrupt based or poll-
ing based notification mechanisms [4, 3]. Unix signals
can be used to develop an interrupt driven message noti-

A Communication Library Using Active Messages to
Improve Performance of PVM

Krishnan R Subramaniam*, Suraj C Kothari* and Don E. Heller†
*Department of Computer Science, Iowa State University, Ames, Iowa 50011, USA

and
†Ames Laboratory, Ames, Iowa 50011, USA



fication scheme for PVM. To deal with the high cost of
signal handling in Unix, our message notification scheme
uses a combination of signal handling and polling. The
signal handler receives the pending message. Subse-
quently, a communication thread is invoked to poll for a
specified number of times. This scheme described in de-
tail in the paper, is well suited for applications where
messages arrive in bursts.

The AM-communication library was tested using
communication intensive and computation intensive ap-
plications. We measured the total time spent in all the
message receive function calls and also the overall ex-
ecution time for each application. The experiments were
conducted on a set of HP9000/800 workstations con-
nected by a 10Mbps Ethernet network.

The remainder of the paper is organized as follows.
Section 2 gives an overview of PVM and communica-
tion issues. Section 3 describes our scheme for efficient
communication in PVM. Section 5 provides performance
results, and the Appendix describes the programmer’s
interface to PVM-AM.

2. OVERVIEW OF PVM

The PVM message passing system consists of a
daemon process and a set of communication primitives.
PVM provides the standard message passing routines
like pvm send( ), which is a non-blocking send, and pvm
recv( ) which is a blocking receive. PVM also provides
primitives to start tasks at a remote node, add/delete hosts
to/from the current set of machines etc.[2]. PVM mes-
sages are tagged messages, i.e., each message is associ-
ated with a “tag” defined by the sender. Tagged mes-
sages enable a receiver to receive messages of a particu-
lar type. Communication between tasks is established
using UDP sockets [8].

The daemon process runs on each PVM host ma-
chine. The daemons communicate among themselves to
perform operations like starting up a user task,
multicasting messages, and finding the status of a par-
ticular task on a particular host. Tasks have two modes
to establish communication with other tasks, the task-
to-task mode and task-to-daemon-to-daemon-to-task
mode. In the task-to-task mode the tasks have a direct
link to each other using a separate socket. Communica-
tion is usually faster in this mode. In the task-daemon-
daemon-task communication mode a message from task

T running on host H to task T’  on host H’  takes the
logical route from T  ––> H ==>  H’ ––>  T’ . This com-
munication mode is usually used if the tasks cannot open
a dedicated socket to communicate between themselves
(this is the case in some Unix systems which have a limit
on the number of sockets that can be active at a time).

All the performance comparisons in our paper used
the fastest mode of communication in PVM which is
the task-to-task mode (the PvmRouteDirect option) and
use PvmDataRaw as the packing option (The
PvmDataRaw option reduces the time needed to “pack”
data if communication is between similar machines).

2.1 Performance problems in PVM

PVM provides a clean abstraction to the program-
mer but the message passing latency is higher than the
physical network’s latency. In many cases the PVM com-
munication library achieves only 15%- 20% of the
network’s theoretical capacity [9]. The extra latency is
partially due to the overheads involved in TCP/IP com-
munication [8], e.g. the UDP protocol computes a
checksum for every packet sent out. The complex mes-
sage buffering scheme in PVM also lowers the perfor-
mance.

Various solutions have been proposed to reduce
the discrepancy between the network’s physical latency
and the actual message passing latency observed while
using communication protocols. Some of the solutions
proposed are, memory mapping of the network buffers
directly into user-space [7], using a DLPI (Data Link
Provider Interface), writing a device driver for the net-
work interface which can be controlled by the user [11].
These approaches either involve extensive patches to the
existing kernel [11], or require root-level permissions
for the user [7], or compromise the security of the
network [7]. Another problem which increases the mes-
sage passing latency is that the sender may have to queue
up messages to be sent if the receiver is not ready to
receive the messages [11]. A typical sequence of events
would be :

• Sender packs a message into a memory buffer.
• Sender initiates a write to a socket to transmit the

message.
• Sender is NOT able to transmit all of the message as

the remote machine’s network buffers are full.
• Sender has to queue the unsent fragments of the



message.
• Sender has to retry transmitting the message, through

the PVM daemon.

The operating system’s network buffers are quite
small compared to the size of messages exchanged
using PVM. This means that almost always a message
will have to be sent through the PVM daemon. Later,
when the Receiver executes a receive message opera-
tion the following sequence of events takes place :

• Receiver initiates a receive message call.
• Receiver receives the initial portion of the message

written by the Sender in step 2.
• Receiver waits for Sender to retransmit the remaining

fragment of the message.

The Receiver has to wait until the Sender trans-
mits the message. The time the Receiver spends waiting
for the message is called the blocked time during which
the Receiver is idle. Section 3 discusses our solution to
minimize the blocked time.

3. COMMUNICATION SCHEME BASED ON
    ACTIVE MESSAGES

In a typical scenario, our communication scheme
will receive a message immediately on arrival, thus
ensuring that the Sender does not have to queue up the
message. The sequence of actions that take place when
a message is sent using our scheme is as follows:

1. Sender executes pvm_active_ send( ) function.
2. PVM-AM library sends the message out through the

network.
3. The message notification mechanism detects the

arrival of a message.
4. The message is immediately received into user-

memory area.

An efficient message notification (or detection
through polling) mechanism is critical to the implemen-
tation of Active Messages. One could either poll for a
message every so often or setup a signal to notify the
arrival of a message. Most Unix systems do not give the
user direct control of the machine level interrupts, they
merely provide an interface to interrupts through Unix
signals. Many Unix systems do not implement a “reli-
able” version of signals [8], i.e., if two signals arrive in
quick succession, one could lose one of the signals. This

means that if we were to choose signals as a message
notification mechanism we could lose some messages.
If we choose to poll for messages, we need to decide
how often to poll and we could be wasting time by poll-
ing regularly when there are no messages to be received.

Our notification mechanism performs polling for
a short period of time after every message is received. If
no message is received within this period, we disable
polling and enable the interrupt driven message notifi-
cation mechanism. To be able to efficiently control the
communication operations, the user process is split into
two threads, a computation thread for performing the
useful computation required by the application, and a
communication thread to handle communication. The
send operations are performed in the computation thread
itself as we don’t need to poll the network interface for
the send operation. The communication thread polls the
network interface waiting for a message to arrive. A timer
which generates a SIGALRM signal is used to switch
regularly between the communication and computation
threads. Regular switching between the two threads en-
sures that messages are received quickly, but it wastes
CPU cycles when there is no message to be received. To
reduce these wasted polls, we disable switching between
the threads if we have not received a message after N

poll
switches. We have to restart switching between threads
if we detect a message (in order for the message to be
received by the communication thread). However, by
disabling the regular switching between communication
and computation threads we have also disabled our mes-
sage notification mechanism. The problem now is how
do we know when a message has arrived if we disable
polling? Our solution is to use a signaling mechanism to
notify the arrival of a message on a socket, by setting up
the sockets to generate a SIGIO signal [8] if there is a
message to be read. The signal handler for SIGIO moves
the flow of execution to the communication thread and
also restarts the regular switching between the compu-
tation and communication threads (i.e. the polling mecha-
nism). The coordination between the the timer and SIGIO
signal handlers is best explained using the following logic
for the two signal handlers along with the state diagram
in Figure 1. The signal handlers work as follows :

Timer (SIGALRM) signal handler
– If no message has been received by communication

thread, increment counter
– If a message was received by communication thread

then reset counter to 0.



– If counter > N
poll

 then disable timer, and enable SIGIO
signal handler

Figure 1. State diagram for the message notification mechanism.

SIGIO signal handler
– reset counter
– disable SIGIO signals
– enable timer for regular polling
– switch to communication thread to receive the mes-

sage that generated the SIGIO signal

Receiving messages immediately on their arrival
could lead to a large number of messages in memory if
the application does not “consume” the messages. We
set a threshold for the maximum number of messages
that can be buffered in memory. If this threshold is ex-
ceeded, then we disable message receives and the com-
pute thread alone is allowed to proceed (state S4 in Fig
1). The compute thread is expected to consume mes-
sages in the course of its computation. When a program
enters this stage neither polling nor SIGIO is active, but
messages will not be lost since the underlying PVM
and the daemons together ensure that messages will not
be missed. Once the number of buffered messages falls
below the threshold, we resume receiving messages im-
mediately on their arrival by enabling SIGIO (we move
from state S4 to state S1 in Fig 1).

By disabling polling and enabling SIGIO after N
poll

switches (the state transition from S2 to S1), we avoid
wasting time in polling when there are no messages to
be received. The SIGIO signal handler restarts the poll-
ing mechanism only when a new message arrives at the
network. So, at any point in time only one of the two
notification mechanisms is active, and by controlling the
N

poll
 parameter we can control the “mix” of the two

mechanisms. If we set N
poll

 very high then the system

becomes almost a polling mechanism, and if we set N
poll

to zero then we make the system fully interrupt driven.
The combination of signaling and polling mechanisms
is particularly useful in applications that have a bursty
communication pattern [8]. Usually polling is cheaper
than signal handling [4]. In systems which allow
efficient signal handling one may want to use the inter-
rupt driven mode alone.

Switching between the computation and the com-
munication threads, requires us to save not only the pro-
cessor context, but also the context of the communica-
tion functions in PVM. The context information that
needs to be saved in PVM is the current send and re-
ceive message buffers.

4. EXPERIMENTS

This section discusses the experimental setup, the
hardware, software platforms and the programs used to
test the enhanced PVM. We use two illustrative applica-
tions, matrix multiplication and sorting, to evaluate
PVM-AM. In both test applications we compare the
“wall-clock” time used to solve a problem of a given
size, and the amount of time the application spends in
receiving messages. All communication between pro-
cessors uses the fastest mode available in PVM as ex-
plained in the last paragraph of Section 2.

4.1 Computing Environment

The laboratory setup consists of a set of 8 HP9000/
800 workstations connected by a 10Mbps Ethernet
network. Of the 8 machines we used 5 to test our imple-
mentation of PVM-AM. Each workstation has its own
local disk space, and is connected to a NFS file server.
The workstations use the HP-UX 9.04 operating sys-
tem. Each workstation has a PA-RISC 1.1 CPU and
64MB RAM.

S1 S4

S2 S3

C5

C2

C1

C
3

C
4

STATES
S1 = Compute thread with only SIGIO enabled
S2 = Compute thread with only polling enabled
S3 = Receive a message
S4 = Compute with SIGIO & polling disabled

CONDITIONS
C1 :: SIGIO raised by network device
C2 :: Thread switch during polling
C3 :: counter > N

poll
 in SIGALRM handler

C4 :: # of Buffered messages > Threshold

C5 :: # of Messages < Threshold



We use five workstations, one as master and the other
four as slaves. Execution time is measured as the time
elapsed from when the master sends the first piece of
data, to when it receives a “done” message from the last
slave.

Figure 2. Data layout for matrix multiplication

4.2.2 Sorting

The sorting program sorts a file of randomly gen-
erated characters in ascending order. The sorting is per-
formed by building a sorting network of processes, the
“leaf” processes read the input file and sort their portion
of the file using quicksort. The leaf processes then send
out the sorted section of the input file to the next higher
level of processes. The non-leaf processes merge the data
from the left and right children and pass it on to the next
higher level. The root process merges the data from its
left and right children and writes the sorted data onto a
file. The sorting network layout is shown in Figure 3.
We have two versions of the sorting program, SORT
which uses regular PVM communication primitives and
ASORT which uses PVM-AM communication primi-
tives. The ASORT version uses N

poll
 = 3 and the time

slice for the communication thread during polling is
200ms.

4.2 Test Cases

We compare the performance of PVM-AM and
regular PVM using two test programs, matrix multipli-
cation and sorting. These two test cases represent com-
putation intensive and communication intensive appli-
cations respectively. In case of matrix multiplication the
communication time is of the order O(n2 ) and the com-

putation time is of the order O(n3 ). So the ratio of com-
putation to communication is of the order O(n). In the
case of sorting this ratio is of the order O(log(n)). An-
other factor in choosing these two programs is they ex-
hibit very different communication patterns. By “pat-
tern of communication” we mean when and from where
messages are sent. In the case of matrix multiplication
we can predict the communication pattern before hand,
but in the case of parallel sorting, the communication
pattern is dependent on the data to be sorted.

4.2.1 Matrix Multiplication

For the operation C = A * B, the parallel algorithm
partitions the B  matrix into four parts B i , each

containing N rows and N/4 columns. B i is sent to pro-

cessor P i . The A matrix is broadcast to all the four pro-
cessors in blocks of k rows. This is programmed in a
typical master slave style with the master sending the
data and waiting for results, while the slaves wait for
input data, perform the operation and send back a “done”
message. Each slave starts up and then receives the B i
matrix. Each slave computes its portion of the result
matrix i.e. Ci = A * B i . The A matrix is broadcast by the
master in blocks of k rows at a time. Each slave proces-
sor P i  waits for a block of k rows of the A matrix from
the master, then uses these rows to compute the partial
product Ci . This step is performed until each Pi  has

calculated Ci . The slaves then send back the C i  matrix
and the master assembles the complete C matrix. Figure
2 shows the layout of data and the computations
performed at each node. We implemented two versions
of the matrix multiplication algorithm, one using regu-
lar PVM (MM) and the other using PVM-AM (AMM).
The two programs are exactly the same, the only differ-
ence being that AMM uses the communication primi-
tives discussed in Appendix, while the AMM version
uses the regular PVM communication primitives. The
AMM version uses Npoll = 1 and the time slice devoted
to the communication thread during polling is 200ms.

Each P
i
 stores:

B
i
 as a [ N x N/4] matrix

C
i
 as a [ N x N/4] matrix

Each P
i
 computes:

C
i
 = A

k
 * B

i

P
1 P

2
P

3
P

4

A 
k

A 
k

A 
k A 

k

Master



Figure 3. Logical view of the sorting network

5. RESULTS

The experiments discussed in Section 4 were run
in dedicated environment where no other user processes
were allowed to run on the machines. The communica-
tion time and the total execution time for matrix multi-
plication are shown in Tables I and II respectively. Tables
III and IV give the communication time and the total
execution time respectively for the parallel sorting pro-
gram. The timings were found to be consistent when the
experiments were repeated several times. For the mul-
tiple runs, the variation in the communication time for
both sorting and matrix multiplication were around 2%.
The variations in the execution time for matrix multipli-
cation and sorting were less than 5% respectively.

In both test cases, the time spent in receiving mes-
sages is significantly lower for the version using Active
PVM communication primitives compared to the ver-
sion using the regular PVM communication primitives.
In the matrix multiplication program for a problem size
of 1408 we get a improvement of 2.1 compared to 1.4
for other sizes. It is unclear why we get a distinctly higher
improvement factor for this case alone.

Since sorting is communication intensive, the re-
duction in communication time leads to a significant
improvement in the total execution time for ASORT
(which uses Active PVM) compared to the total execu-
tion time for SORT (which uses regular PVM).

6. CONCLUSION

In this paper we have presented a new communi-
cation scheme to improve the performance in PVM.
We have shown that the new communication scheme sig-
nificantly reduces the communication time. In compari-
son to the PVM library PVM-AM results in 20% to 50%
improvements in the communication performance in test
cases of matrix multiplication and sorting. Existing code
written for PVM can be easily ported to use the new
PVM-AM library.

 APPENDIX: PROGRAMMER INTERFACE

PVM-AM provides the programmer with the following
set of functions:

pvm_active_init(work fn):
This function should be called after tasks have been

TABLE I
Comparison of Message Receive Times for Matrix Multiplication

  Matrix Multiply Matrix Multiply using
using Active PVM       normal PVM

   Improvement Factor
Matrix Size No. of Mesgs. Mesg. Recv. Time  Mesg. Recv. Time Due to Active Messages

1024 8 13.71 18.98 1.38
1280 10 19.80 28.58 1.44
1408 11 22.98 48.07 2.09
1536 12 31.26 42.40 1.36
1664 13 34.12 46.57 1.36
2048 16 47.76 92.34 1.93

Root

Intermediate Nodes

Leaf
Nodes

Disk

P0

P1 P2

P3 P4 P5 P6



spawned, to initialize the AM code and to start the
threads. The work_fn is the function that does all the
computation in the application. The threading mecha-
nism will switch between this function and the internal
communication thread using a timer to generate
SIGALRM as explained in Section 3.

pvm_active_send(tid, tag):
This function has the same functionality as the

usual PVM pvm send(tid,tag) function, i.e. it sends the
message to task tid with a tag tag.

pvm_active_receive(tid, tag):
This function has the same functionality as the

usual PVM pvm_recv(tid,tag) function, i.e. it receives
a message with tag tag from task tid. This function
searches the set of previously received messages to see
if the requested message is in memory. If the requested
message is not found we switch to the communication
thread and wait for a message to arrive.

pvm_active_set_do_only_work(tag, N):
This function enables the user to specify that if

more than N messages with tag tag are pending in
memory, then the application wants to do only compu-
tation. This function enables the user to “consume” mes-
sages quickly and prevents too many messages from
building up and using memory. This parameter needs to
be set by the programmer based on the message size
used in communication.

pvm_active_set npoll(N):
This function sets the N

poll
 value for the communi-

cation thread. The N
poll

 value controls the number of polls
performed by the communication thread as explained in
Section 3.

pvm_active_exit(  ):
This is a cleanup function to exit from PVM-AM

and performs house-keeping activities to ensure a proper
exit from PVM-AM.

Existing PVM applications can be adapted to use
the AM communication library as follows:

TABLE II
 Comparison of Execution Times for Matrix Multiplication

  Matrix Multiply Matrix Multiply using
using Active PVM       normal PVM

   Improvement Factor
Matrix Size No. of Mesgs. Execution Time  Execution Time Due to Active Messages

1024 8 363.19 362.29 1.00
1280 10 710.10 715.35 1.01
1408 11 947.95 973.35 1.03
1536 12 1229.40 1242.84 1.01
1664 13 1582.04 1601.14 1.01
2048 16 2980.47 3056.31 1.03

TABLE III
Comparison of Message Receive Times for Parallel Sorting

Parallel Sorting using Parallel Sorting using
      Active PVM       regular PVM

Improvement Factor Due
Input File Size No. of Mesgs. Mesg. Recv. Time Mesg. Recv. Time to Active Messages

2097152 512 10.89 13.29 1.22
4194304 1024 24.44 31.63 1.29
8388608 2048 48.26 67.26 1.39
16777216 4096 91.37 140.52 1.54



• Call AM_init(work) immediately after spawning child
tasks

• The function work(  ) performs all the computation in
the application

• Change pvm_send(tid, tag) function calls to pvm_active
_send(tid, tag)

• Change pvm_recv(tid, tag) function calls to pvm_active
_recv(tid, tag)

• Change pvm_exit(  ) function calls to pvm_active_exit
(  )

The main point to be kept in mind while porting
code to PVM-AM is that the “main” function starts the
child tasks and then calls the “pvm_active_init” func-
tion.

References

[1] Adam Beguelin, Jack Dongarra, Al Geist, Robert Manchek,
Steve Otto, and Jon Walpole. PVM: Experiences, current
status and future direction. Supercomputing ’93 Proceedings,
1993.

[2] G.A.Geist and V.S.Sunderam. Network based concurrent
computing on the PVM system. Concurrency: Practice and
Experience, 4(4), June 1992.

[3] K.E.Schauser and C.J.Scheiman. Active Messages implemen
tations for the Meiko CS-2. Technical report, Department of
Computer Science, UC Santa Barbara, October 1994.

[4] Lok T. Liu and David E. Culler. Measurements of Active
Messages performance on the CM-5. Technical report,
Department of Computer Science, UC Berkeley, May 1994.

[5] L.W.Tucker and M.Mainwaring. CMMD:Active messages on
the CM-5. Parallel Computing, 20(4), April 1994.

[6] Richard P. Martin. HPAM: An active message layer for a
network of HP workstations. Proceedings of Hot Intercon-
nects II, August 1994.

[7] Philip J. Mucci and Jack Dongarra. Possibilities for Active
Messaging in PVM. Technical report, University of
Tennessee, February 1995.

[8] W. Richard Stevens. Unix Network Programming. Prentice
Hall, 1990.

[9] S.White, A.Alund, and V.S.Sunderam. Performance of the
NAS parallel benchmarks on PVM-based networks. Journal
of Parallel and Distributed Computing, 26(1), April 1995.

[10] Thorsten von Eicken. Building parallel programming
languages using active messages. Technical report, Depart
ment of Computer Science, Cornell University, 1994.

[11] Thorsten von Eicken, David E Culler, Seth Copen Goldstein,
and Klaus Erik Schauser. ActiveMessages: A mechanism for
integrated communication and computation. Proceedings of
the 19th International Symposium of Computer Architecture,
May 1992.

KRISHANAN R. SUBRAMANIAM  got his B.E. from the
Coimbatore Institute of Technology in India. He got his M.S. in
computer science from Iowa State University. He is currently
working for Apple Computers. His research interests are parallel
and distributed computing and operating systems.

SURAJ C. KOTHARI  got his B.Sc. from Poona University in
India and Ph.D. in mathematics from Purdue University. He is
currently a professor of computer science at Iowa State Univer-
sity. His research interests are parallel and distributed computing,
scientific computing, and neural networks. His group is develop-
ing two experimental systems: PARALLELIZATION AGENT, a
system for class-specific automatic parallelization, and BATRUN,
a distributed batch processing system to utilize idle computers in
a network as a resource for large-scale computing.

DON E. HELLER  got his B.S. in mathematics and Ph.D. in
computer science, both from Carnegie-Mellon University. He is
currently a senior scientist at Ames Laboratory (U.S. DOE), and
an adjunct associate professor of computer science at Iowa State
University. Previously, he has held positions at the Institute for
Computer Applications in Science and Engineering, Lawrence
Livermore National Laboratory, Pennsylvania State University,
Bellaire Research Center (Shell Oil), and the Center for Research
on Parallel Computation at Rice University. His research interests
are parallel and distributed computing and scientific computing.

TABLE IV
Comparison of Execution Times for Parallel Sorting

Parallel Sorting using Parallel Sorting using
      Active PVM       regular PVM

Improvement Factor Due
Input File Size No. of Mesgs. Mesg. Recv. Time Mesg. Recv. Time to Active Messages

2097152 512 16.60 16.74 1.01
4194304 1024 35.60 38.37 1.08
8388608 2048 66.57 80.74 1.21
16777216 4096 138.81 167.62 1.21


